A plasma membrane-targeted cytosolic domain of STIM1 selectively activates ARC channels, an arachidonate-regulated store-independent Orai channel

نویسندگان

  • Jill L. Thompson
  • Trevor J. Shuttleworth
چکیده

The Orai family of calcium channels includes the store-operated CRAC channels and store-independent, arachidonic acid (AA)-regulated ARC channels. Both depend on STIM1 for their activation but, whereas CRAC channel activation involves sensing the depletion of intracellular calcium stores via a luminal N terminal EF-hand of STIM1 in the endoplasmic reticulum (ER) membrane, ARC channels are exclusively activated by the pool of STIM1 that constitutively resides in the plasma membrane (PM). Here, the EF-hand is extracellular and unlikely to ever lose its bound calcium, suggesting that STIM1-dependent activation of ARC channels is very different from that of CRAC channels. We now show that attachment of the cytosolic portion of STIM1 to the inner face of the PM via an N terminal Lck-domain sequence is sufficient to enable normal AA-dependent activation of ARC channels, while failing to allow activation of store-operated CRAC channels. Introduction of a point mutation within the Lck-domain resulted in the loss of both PM localization and ARC channel activation. Reversing the orientation of the PM-anchored STIM1 C terminus via a C-terminal CAAX-box fails to support either CRAC or ARC channel activation. Finally, the Lck-anchored STIM1 C-terminal domain also enabled the exclusive activation of the ARC channels following physiological agonist addition. These data demonstrate that simple tethering of the cytosolic C-terminal domain of STIM1 to the inner face of the PM is sufficient to allow the full, normal and exclusive activation of ARC channels, and that the N-terminal regions of STIM1 (including the EF-hand domain) play no significant role in this activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex role of STIM1 in the activation of store-independent Orai1/3 channels

Orai proteins contribute to Ca(2+) entry into cells through both store-dependent, Ca(2+) release-activated Ca(2+) (CRAC) channels (Orai1) and store-independent, arachidonic acid (AA)-regulated Ca(2+) (ARC) and leukotriene C4 (LTC4)-regulated Ca(2+) (LRC) channels (Orai1/3 heteromultimers). Although activated by fundamentally different mechanisms, CRAC channels, like ARC and LRC channels, requir...

متن کامل

P to Ca 2 + signaling just got STIMy : an update on STIM 1 activated TRPC channels

Calcium is a ubiquitous signaling molecule, indispensable for cellular metabolism of organisms from unicellular life forms to higher eukaryotes. The biological function of most eukaryotic cells is uniquely regulated by changes in cytosolic calcium, which is largely achieved by the universal phenomenon of store-operated calcium entry (SOCE). The canonical TRPs and Orai channels have been describ...

متن کامل

Authentic CRAC channel activity requires STIM1 and the conserved portion of the Orai N terminus

Calcium (Ca2+) is an essential second messenger required for diverse signaling processes in immune cells. Ca2+ release-activated Ca2+ (CRAC) channels represent one main Ca2+ entry pathway into the cell. They are fully reconstituted via two proteins, the stromal interaction molecule 1 (STIM1), a Ca2+ sensor in the endoplasmic reticulum, and the Ca2+ ion channel Orai in the plasma membrane. After...

متن کامل

In this issue of Channels

Let me first take the opportunity to thank all the authors for their excellent contributions to this special issue dedicated to the relatively young field of “STIM/Orai” research. I would also like to express my sincere thanks to the Channels Editor-in-Chief, Gerald Zamponi, who approached me more than a year ago with this project and the extraordinary dedicated Channels staff, in particular, H...

متن کامل

STIM1 Clusters and Activates CRAC Channels via Direct Binding of a Cytosolic Domain to Orai1

Store-operated Ca(2+) channels activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER) are a major Ca(2+) entry pathway in nonexcitable cells and are essential for T cell activation and adaptive immunity. After store depletion, the ER Ca(2+) sensor STIM1 and the CRAC channel protein Orai1 redistribute to ER-plasma membrane (PM) junctions, but the fundamental issue of how STIM1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012